генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению. Его иногда называют митроном. Явление перестройки частоты
Магнетрона
напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Ими же в 1950 был предложен М., н. н., с центральным катодом и в 1955 - с вынесенной в торец электронной пушкой. М., н. н., выходной мощностью до 1
вт широко применяются в измерительной радиоаппаратуре, в
Гетеродинах широкополосных радиоприёмников с быстрой перестройкой частоты и в качестве задающих генераторов в радиолокационных станциях, 1-10
вт - в радиовысотомерах, телеметрической аппаратуре и других устройствах, где требуется режим частотной модуляции (См.
Частотная модуляция)
в широкой полосе генерируемых частот, свыше 10
вт - в широкополосных радиопередатчиках, телевизионных и телеметрических устройствах бортовых систем и других. В 50-60-х годах 20 века было выпущено много типов М., н. н., работающих на частотах 0,2-10
Ггц. М., н. н., с выходной мощностью до 1
вт (включительно) имеют диапазон перестройки частоты примерно 1-1,5 октавы, 1-10
вт - до 50\% от средней частоты, 10-500
вт - до 10-20\%. Кпд маломощных М., н. н., как правило, не превышает 10\%, а наиболее мощных достигает 70\%.
От обычного многорезонаторного магнетрона М., н. н., отличается пониженной добротностью колебательной системы и уменьшенной силой электронного тока в пространстве взаимодействия. Колебательная система М., н. н. (
рис.), представляет собой цилиндрический анод, выполненный в виде встречных штырей, встроенных в
Объёмный резонатор, или отрезок линии, например отрезок
Радиоволновода, полосковой линии (См.
Полосковая линия) и др. Уменьшение силы тока в пространстве взаимодействия М., н. н., достигается либо путём недогрева катода (ограничение эмиссии электронов температурой), либо применением торцевой электронной пушки и заменой центрального эмитирующего катода неэмитирующим электродом. Распространён второй способ, так как он позволяет посредством управляющего электрода изменять силу тока и, следовательно, мощность М., н. н. Так же, как и в многорезонаторном магнетроне, при генерировании колебаний электронные сгустки движутся с такой тангенциальной скоростью, что за один полупериод колебаний перемещаются на расстояние, равное шагу анодной штыревой системы. Это условие синхронизма выражается следующей линейной зависимостью между анодным
напряжением Ua (
в) и рабочей частотой
f (
Ггц)
,
где В - индукция магнитного поля (гс); N - число штырей; ra и rk - соответственно радиусы анода и центрального неэмитирующего электрода (см).
Лит.: Стальмахов В. С., Основы электроники сверхвысокочастотных приборов со скрещенными полями, М., 1963, с. 254-77; Дятлов Ю. В., Козлов Л. Н., Митроны, М., 1967.
И. В. Соколов.
Схематическое изображение магнетрона, настраиваемого напряжением: 1 - анод в виде системы встречных штырей; 2 - неэмитирующий электрод; 3 - катод; 4 - управляющий электрод; 5 - керамические цилиндры вакуумплотной оболочки; 6 - низкодобротный объёмный резонатор; 7 - экранирующий магнитопроводящий кожух; 8 - постоянный магнит; 9 - коаксиальный вывод энергии; 10 - элемент связи вывода энергии с объёмным резонатором; Uyпр - источник управляющего напряжения; Ua - источник анодного напряжения.